DNA recognition by the DNA primase of bacteriophage T7: a structure-function study of the zinc-binding domain.

نویسندگان

  • Barak Akabayov
  • Seung-Joo Lee
  • Sabine R Akabayov
  • Sandeep Rekhi
  • Bin Zhu
  • Charles C Richardson
چکیده

Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of the helicase and primase domain of the gene 4 protein of bacteriophage T7 in accessing the primase recognition site.

The 63 kDa gene 4 protein of bacteriophage T7 provides both helicase and primase activities. The C-terminal helicase domain of the gene 4 protein is responsible for DNA-dependent NTP hydrolysis and for hexamer formation, whereas the N-terminal primase domain contains the zinc motif that is, in part, responsible for template-directed oligoribonucleotide synthesis. In the presence of beta, gamma-...

متن کامل

The Cys4 zinc finger of bacteriophage T7 primase in sequence-specific single-stranded DNA recognition.

Bacteriophage T7 DNA primase recognizes 5'-GTC-3' in single-stranded DNA. The primase contains a single Cys4 zinc-binding motif that is essential for recognition. Biochemical and mutagenic analyses suggest that the Cys4 motif contacts cytosine of 5'-GTC-3' and may also contribute to thymine recognition. Residues His33 and Asp31 are critical for these interactions. Biochemical analysis also reve...

متن کامل

Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon...

متن کامل

Molecular interactions in the priming complex of bacteriophage T7.

The lagging-strand DNA polymerase requires an oligoribonucleotide, synthesized by DNA primase, to initiate the synthesis of an Okazaki fragment. In the replication system of bacteriophage T7 both DNA primase and DNA helicase activities are contained within a single protein, the bifunctional gene 4 protein (gp4). Intermolecular interactions between gp4 and T7 DNA polymerase are crucial for the s...

متن کامل

Characterization of a novel DNA primase from the Salmonella typhimurium bacteriophage SP6.

The gene for the DNA primase encoded by Salmonella typhimurium bacteriophage SP6 has been cloned and expressed in Escherichia coli and its 74-kDa protein product purified to homogeneity. The SP6 primase is a DNA-dependent RNA polymerase that synthesizes short oligoribonucleotides containing each of the four canonical ribonucleotides. GTP and CTP are both required for the initiation of oligoribo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 48 8  شماره 

صفحات  -

تاریخ انتشار 2009